Introduction

A mismatch between the brain's motor control and sensory systems has been suggested as one mechanism whereby maladaptive neuroplastic changes contribute to the experience of chronic movement related pain [1]. Several studies have investigated this hypothesis by artificially inducing a state of sensory-motor incongruence using mirrors [2-4]. The data to date appear to suggest that creating an environment of sensori-motor incongruence induces various sensory changes and feeling of peculiarity, however the effect on pain is less clear.

Aim

The aim of this study was to test the hypothesis that healthy participants would demonstrate reduced pain thresholds and report greater intensity of pain associated with this testing in a condition of induced sensory motor incongruence compared to conditions that did not promote incongruence.

Methods

A randomised within-subject 2 x 2 factorial cross-over design experiment with 35 healthy participants. Participants undertook movements of the upper limbs under four conditions with a randomised, counterbalanced order.

Pressure pain threshold (PPT) over the elbow of the non dominant arm and pain intensity associated with testing was measured using a standardised protocol at baseline and immediately following each condition. The conditions were:

A. synchronous upper limb movements, with normal visualisation of the non dominant arm.
B. asynchronous upper limb movements, with normal visualisation of the non dominant arm.
C. synchronous upper limb movements, with a mirror positioned between the two arms, where subjects attended to the reflection of their dominant arm in the mirror, which appears in the peripersonal space of the non dominant arm.
D. asynchronous upper limb movements, with a mirror positioned between the two arms, where subjects attended to the reflection of their dominant arm in the mirror, which appears in the peripersonal space of the non dominant arm. This was the condition of maximal sensory-motor incongruence.

A regression based generalised linear mixed model (GLMM) was used to quantify the relationship between the dependent variables, condition and order, which were treated as independent fixed-effects variables (within-subject factors), as well as baseline PPTs. The null hypothesis was that the difference in mean PPT for each condition was not significant.

Bonferroni correction was used for post hoc comparisons.

Discussion & Conclusions

We found that inducing a state of movement related sensory-motor incongruence in the upper limb of healthy volunteers did not influence PPT or the discomfort associated with PPT testing. The inability to detect any upregulation of the nociceptive system suggests that a mismatch between movement intent and feedback might not contribute to clinical pain states.

Results

For average PPT there was no statistically significant difference for each bivariate comparison of condition (p=0.887), indicating no difference in PPT between movement conditions. The results of the sensitivity analysis using only the first PPT test yielded the same results. Similarly, for pain intensity there was no statistically significant difference for the bivariate comparison of condition (p=0.771), signifying no difference in pain intensity associated with testing across the four movement conditions.

References


Figure Legend

Subject without the mirror (A and B) and viewing the mirror (C and D) whilst performing upper limbs synchronous (A and C) and asynchronous (B and D) movements.

Contact details: benedict.wand@nd.edu.au